【#第一文档网# 导语】以下是®第一文档网的小编为您整理的《小波去噪的优点与不足_小波去噪方法的分析比较》,欢迎阅读!

小波去噪的优点与不足_小波去噪方法的分析比较
小波分析是近十几年来发展起来的一种新的数学理论和方法,目前已被成功
地应用于许多领域。作为一种新的时频分析方法,小波分析由于具有多分辨分析的特点,能够聚焦到信号的任意细节进行多分辨率的时频域分析,因而被誉为数学显微镜。 本文主要介绍小波分解与重构法、非线性小波变换阈值法、平移不变量小波法以及小波变换模极大值法这4种常用的小波去噪方法。将它们分别用于仿真算例的去噪处理,并对这几种方法的应用场合、去噪性能、计算速度和影响因素等方面进行比较,最后对小波去噪方法选择加以总结。
1、小波分解与重构法去噪本质上相当于一个具有多个通道的带通滤波器,主要适用于有用信号和噪声的频带相互分离时的确定性噪声的情况。在这种情况下,该方法能基本去除噪声,去噪效果很好。但对于有用信号和噪声的频带相互重叠的情况(如信号混有白噪声),效果就不甚理想。 优点:
算法简单明了,计算速度快。若N为信号的长度,则它的计算速度是O(N)。缺点:适用范围不是很广泛。它对于特定情况下已知道噪声的频率范围且信号和噪声的频带相互分离时非常有效。对实际应用中广泛存在的白噪声,其去噪效果则较差。
主要适用于信号中混有白噪声的情况。用阈值法去噪的优点是噪声几乎完全得到抑制,且反映原始信号的特征尖峰点得到很好的保留。用软阈值的方法去噪能够使估计信号实现最大均方误差最小化,即去噪后的估计信号是原始信号的近似最优估计;且估计信号至少和原始信号同样光滑而不会产生附加振荡。
优点:该方法还具有广泛的适应性,因而是众多小波去噪方法中应用最为广泛的一种。阈值法的计算速度很快,为O(N),其中N为信号长度。
缺点:在有些情况下,如在信号的不连续点处,去噪后会出现伪吉布斯现象。且用该方法去噪时,阈值的选择对去噪效果有着很重要的影响。
阈值的选择方法有多种,实际应用时应根据具体的情况来选择合适的阈值。主要适用于信
本文来源:https://www.dy1993.cn/FsDK.html